
ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2012–11–18

Problem A

Ginkgo Numbers
Input: Standard Input
Time Limit: 30 seconds

We will define Ginkgo numbers and multiplication on Ginkgo numbers.

A Ginkgo number is a pair ⟨m,n⟩ where m and n are integers. For example, ⟨1, 1⟩, ⟨−2, 1⟩ and
⟨−3,−1⟩ are Ginkgo numbers.

The multiplication on Ginkgo numbers is defined by ⟨m,n⟩ · ⟨x, y⟩ = ⟨mx− ny, my + nx⟩. For
example, ⟨1, 1⟩ · ⟨−2, 1⟩ = ⟨−3,−1⟩.

A Ginkgo number ⟨m,n⟩ is called a divisor of a Ginkgo number ⟨p, q⟩ if there exists a Ginkgo
number ⟨x, y⟩ such that ⟨m,n⟩ · ⟨x, y⟩ = ⟨p, q⟩.

For any Ginkgo number ⟨m,n⟩, Ginkgo numbers ⟨1, 0⟩, ⟨0, 1⟩, ⟨−1, 0⟩, ⟨0,−1⟩, ⟨m,n⟩, ⟨−n,m⟩,
⟨−m,−n⟩ and ⟨n,−m⟩ are divisors of ⟨m,n⟩. If m2+n2 > 1, these Ginkgo numbers are distinct.
In other words, any Ginkgo number such that m2 + n2 > 1 has at least eight divisors.

A Ginkgo number ⟨m,n⟩ is called a prime if m2+n2 > 1 and it has exactly eight divisors. Your
mission is to check whether a given Ginkgo number is a prime or not.

The following two facts might be useful to check whether a Ginkgo number is a divisor of another
Ginkgo number.

• Suppose m2 + n2 > 0. Then, ⟨m,n⟩ is a divisor of ⟨p, q⟩ if and only if the integer m2 + n2

is a common divisor of mp+ nq and mq − np.

• If ⟨m,n⟩ · ⟨x, y⟩ = ⟨p, q⟩, then (m2 + n2)(x2 + y2) = p2 + q2.

Input

The first line of the input contains a single integer, which is the number of datasets.

The rest of the input is a sequence of datasets. Each dataset is a line containing two integers m
and n, separated by a space. They designate the Ginkgo number ⟨m,n⟩. You can assume
1 < m2 + n2 < 20000.

Output

For each dataset, output a character ‘P’ in a line if the Ginkgo number is a prime. Output a
character ‘C’ in a line otherwise.

1

Sample Input

8

10 0

0 2

-3 0

4 2

0 -13

-4 1

-2 -1

3 -1

Output for the Sample Input

C

C

P

C

C

P

P

C

2

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2012–11–18

Problem B

Stylish
Input: Standard Input
Time Limit: 30 seconds

Stylish is a programming language whose syntax comprises names, that are sequences of Latin
alphabet letters, three types of grouping symbols, periods (‘.’), and newlines. Grouping symbols,
namely round brackets (‘(’ and ‘)’), curly brackets (‘{’ and ‘}’), and square brackets (‘[’ and
‘]’), must match and be nested properly. Unlike most other programming languages, Stylish
uses periods instead of whitespaces for the purpose of term separation. The following is an
example of a Stylish program.

1 (Welcome.to

2 Stylish)

3 {Stylish.is

4[.(a.programming.language.fun.to.learn)

5]

6 Maybe.[

7 It.will.be.an.official.ICPC.language

8]

9}

As you see in the example, a Stylish program is indented by periods. The amount of indentation
of a line is the number of leading periods of it.

Your mission is to visit Stylish masters, learn their indentation styles, and become the youngest
Stylish master. An indentation style for well-indented Stylish programs is defined by a triple
of integers, (R,C, S), satisfying 1 ≤ R,C, S ≤ 20. R, C and S are amounts of indentation
introduced by an open round bracket, an open curly bracket, and an open square bracket,
respectively.

In a well-indented program, the amount of indentation of a line is given by R(ro − rc) +
C(co − cc) + S(so − sc), where ro, co, and so are the numbers of occurrences of open round,
curly, and square brackets in all preceding lines, respectively, and rc, cc, and sc are those of close
brackets. The first line has no indentation in any well-indented program.

The above example is formatted in the indentation style (R,C, S) = (9, 5, 2). The only grouping
symbol occurring in the first line of the above program is an open round bracket. Therefore the
amount of indentation for the second line is 9 · (1− 0)+5 · (0− 0)+2 · (0− 0) = 9. The first four
lines contain two open round brackets, one open curly bracket, one open square bracket, two

3

close round brackets, but no close curly nor square bracket. Therefore the amount of indentation
for the fifth line is 9 · (2− 2) + 5 · (1− 0) + 2 · (1− 0) = 7.

Stylish masters write only well-indented Stylish programs. Every master has his/her own inden-
tation style.

Write a program that imitates indentation styles of Stylish masters.

Input

The input consists of multiple datasets. The first line of a dataset contains two integers p (1 ≤
p ≤ 10) and q (1 ≤ q ≤ 10). The next p lines form a well-indented program P written by a
Stylish master and the following q lines form another program Q. You may assume that every
line of both programs has at least one character and at most 80 characters. Also, you may
assume that no line of Q starts with a period.

The last dataset is followed by a line containing two zeros.

Output

Apply the indentation style of P to Q and output the appropriate amount of indentation for
each line of Q. The amounts must be output in a line in the order of corresponding lines of Q
and they must be separated by a single space. The last one should not be followed by trailing
spaces. If the appropriate amount of indentation of a line of Q cannot be determined uniquely
through analysis of P , then output -1 for that line.

Sample Input

5 4

(Follow.my.style

.........starting.from.round.brackets)

{then.curly.brackets

.....[.and.finally

.......square.brackets.]}

(Thank.you

{for.showing.me

[all

the.secrets]})

4 2

(This.time.I.will.show.you

.........(how.to.use.round.brackets)

.........[but.not.about.square.brackets]

.........{nor.curly.brackets})

(I.learned

how.to.use.round.brackets)

4 2

4

(This.time.I.will.show.you

.........(how.to.use.round.brackets)

.........[but.not.about.square.brackets]

.........{nor.curly.brackets})

[I.have.not.learned

how.to.use.square.brackets]

2 2

(Be.smart.and.let.fear.of

..(closed.brackets).go)

(A.pair.of.round.brackets.enclosing

[A.line.enclosed.in.square.brackets])

1 2

Telling.you.nothing.but.you.can.make.it

[One.liner.(is).(never.indented)]

[One.liner.(is).(never.indented)]

2 4

([{Learn.from.my.KungFu

...}])

((

{{

[[

]]}}))

1 2

Do.not.waste.your.time.trying.to.read.from.emptiness

(

)

2 3

({Quite.interesting.art.of.ambiguity

....})

{

(

)}

2 4

({[

..]})

(

{

[

]})

0 0

Output for the Sample Input

0 9 14 16

0 9

0 -1

5

0 2

0 0

0 2 4 6

0 -1

0 -1 4

0 20 40 60

6

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2012–11–18

Problem C

One-Dimensional Cellular Automaton
Input: Standard Input
Time Limit: 30 seconds

There is a one-dimensional cellular automaton consisting of N cells. Cells are numbered from 0
to N − 1.

Each cell has a state represented as a non-negative integer less than M . The states of cells
evolve through discrete time steps. We denote the state of the i-th cell at time t as S(i, t). The
state at time t+ 1 is defined by the equation

S(i, t+ 1) =
(
A× S(i− 1, t) +B × S(i, t) + C × S(i+ 1, t)

)
mod M, (1)

where A, B and C are non-negative integer constants. For i < 0 or N ≤ i, we define S(i, t) = 0.

Given an automaton definition and initial states of cells, your mission is to write a program that
computes the states of the cells at a specified time T .

Input

The input is a sequence of datasets. Each dataset is formatted as follows.

N M A B C T
S(0, 0) S(1, 0) . . . S(N − 1, 0)

The first line of a dataset consists of six integers, namely N , M , A, B, C and T . N is the
number of cells. M is the modulus in the equation (1). A, B and C are coefficients in the
equation (1). Finally, T is the time for which you should compute the states.

You may assume that 0 < N ≤ 50, 0 < M ≤ 1000, 0 ≤ A,B,C < M and 0 ≤ T ≤ 109.

The second line consists of N integers, each of which is non-negative and less than M . They
represent the states of the cells at time zero.

A line containing six zeros indicates the end of the input.

Output

For each dataset, output a line that contains the states of the cells at time T . The format of
the output is as follows.

S(0, T) S(1, T) . . . S(N − 1, T)

Each state must be represented as an integer and the integers must be separated by a space.

7

Sample Input

5 4 1 3 2 0

0 1 2 0 1

5 7 1 3 2 1

0 1 2 0 1

5 13 1 3 2 11

0 1 2 0 1

5 5 2 0 1 100

0 1 2 0 1

6 6 0 2 3 1000

0 1 2 0 1 4

20 1000 0 2 3 1000000000

0 1 2 0 1 0 1 2 0 1 0 1 2 0 1 0 1 2 0 1

30 2 1 0 1 1000000000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

30 2 1 1 1 1000000000

1 0

30 5 2 3 1 1000000000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

Output for the Sample Input

0 1 2 0 1

2 0 0 4 3

2 12 10 9 11

3 0 4 2 1

0 4 2 0 4 4

0 376 752 0 376 0 376 752 0 376 0 376 752 0 376 0 376 752 0 376

1 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 3 2 2 2 3 3 1 4 3 1 2 3 0 4 3 3 0 4 2 2 2 2 1 1 2 1 3 0

8

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2012–11–18

Problem D

Find the Outlier
Input: Standard Input
Time Limit: 30 seconds

Professor Abacus has just built a new computing engine for making numerical tables. It was
designed to calculate the values of a polynomial function in one variable at several points at
a time. With the polynomial function f(x) = x2 + 2x + 1, for instance, a possible expected
calculation result is 1 (= f(0)), 4 (= f(1)), 9 (= f(2)), 16 (= f(3)), and 25 (= f(4)).

It is a pity, however, the engine seemingly has faulty components and exactly one value among
those calculated simultaneously is always wrong. With the same polynomial function as above,
it can, for instance, output 1, 4, 12, 16, and 25 instead of 1, 4, 9, 16, and 25.

You are requested to help the professor identify the faulty components. As the first step, you
should write a program that scans calculation results of the engine and finds the wrong values.

Input

The input is a sequence of datasets, each representing a calculation result in the following format.

d
v0
v1
...
vd+2

Here, d in the first line is a positive integer that represents the degree of the polynomial, namely,
the highest exponent of the variable. For instance, the degree of 4x5 + 3x+ 0.5 is five and that
of 2.4x+ 3.8 is one. d is at most five.

The following d + 3 lines contain the calculation result of f(0), f(1), . . . , and f(d + 2) in this
order, where f is the polynomial function. Each of the lines contains a decimal fraction between
−100.0 and 100.0, exclusive.

You can assume that the wrong value, which is exactly one of f(0), f(1), . . . , and f(d+2), has
an error greater than 1.0. Since rounding errors are inevitable, the other values may also have
errors but they are small and never exceed 10−6.

The end of the input is indicated by a line containing a zero.

9

Output

For each dataset, output i in a line when vi is wrong.

Sample Input

2

1.0

4.0

12.0

16.0

25.0

1

-30.5893962764

5.76397083962

39.3853798058

74.3727663177

4

42.4715310246

79.5420238202

28.0282396675

-30.3627807522

-49.8363481393

-25.5101480106

7.58575761381

5

-21.9161699038

-48.469304271

-24.3188578417

-2.35085940324

-9.70239202086

-47.2709510623

-93.5066246072

-82.5073836498

0

Output for the Sample Input

2

1

1

6

10

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2012–11–18

Problem E

Sliding Block Puzzle
Input: Standard Input
Time Limit: 30 seconds

In sliding block puzzles, we repeatedly slide pieces (blocks) to open spaces within a frame to
establish a goal placement of pieces.

A puzzle creator has designed a new puzzle by combining the ideas of sliding block puzzles and
mazes. The puzzle is played in a rectangular frame segmented into unit squares. Some squares
are pre-occupied by obstacles. There are a number of pieces placed in the frame, one 2× 2 king
piece and some number of 1 × 1 pawn pieces. Exactly two 1 × 1 squares are left open. If a
pawn piece is adjacent to an open square, we can slide the piece there. If a whole edge of the
king piece is adjacent to two open squares, we can slide the king piece. We cannot move the
obstacles. Starting from a given initial placement, the objective of the puzzle is to move the
king piece to the upper-left corner of the frame.

The following figure illustrates the initial placement of the fourth dataset of the sample input.

The king piece

A pawn piece

An obstacle

An open square

Figure E.1: The fourth dataset of the sample input.

Your task is to write a program that computes the minimum number of moves to solve the
puzzle from a given placement of pieces. Here, one move means sliding either king or pawn piece
to an adjacent position.

Input

The input is a sequence of datasets. The first line of a dataset consists of two integers H and W
separated by a space, where H and W are the height and the width of the frame. The following
H lines, each consisting of W characters, denote the initial placement of pieces. In those H
lines, ‘X’, ‘o’, ‘*’, and ‘.’ denote a part of the king piece, a pawn piece, an obstacle, and an
open square, respectively. There are no other characters in those H lines. You may assume that
3 ≤ H ≤ 50 and 3 ≤ W ≤ 50.

11

A line containing two zeros separated by a space indicates the end of the input.

Output

For each dataset, output a line containing the minimum number of moves required to move the
king piece to the upper-left corner. If there is no way to do so, output -1.

Sample Input

3 3

oo.

oXX

.XX

3 3

XXo

XX.

o.o

3 5

.o*XX

oooXX

oooo.

7 12

oooooooooooo

ooooo*****oo

oooooo****oo

o**ooo***ooo

o***ooooo..o

o**ooooooXXo

ooooo****XXo

5 30

oooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooo

o***************************oo

XX.ooooooooooooooooooooooooooo

XX.ooooooooooooooooooooooooooo

0 0

Output for the Sample Input

11

0

-1

382

6807

12

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2012–11–18

Problem F

Never Wait for Weights
Input: Standard Input
Time Limit: 15 seconds

In a laboratory, an assistant, Nathan Wada, is measuring weight differences between sample
pieces pair by pair. He is using a balance because it can more precisely measure the weight
difference between two samples than a spring scale when the samples have nearly the same
weight.

He is occasionally asked the weight differences between pairs of samples. He can or cannot
answer based on measurement results already obtained.

Since he is accumulating a massive amount of measurement data, it is now not easy for him
to promptly tell the weight differences. Nathan asks you to develop a program that records
measurement results and automatically tells the weight differences.

Input

The input consists of multiple datasets. The first line of a dataset contains two integers N
and M . N denotes the number of sample pieces (2 ≤ N ≤ 100, 000). Each sample is assigned
a unique number from 1 to N as an identifier. The rest of the dataset consists of M lines
(1 ≤ M ≤ 100, 000), each of which corresponds to either a measurement result or an inquiry.
They are given in chronological order.

A measurement result has the format,

! a b w

which represents the sample piece numbered b is heavier than one numbered a by w micrograms
(a ̸= b). That is, w = wb − wa, where wa and wb are the weights of a and b, respectively. Here,
w is a non-negative integer not exceeding 1,000,000.

You may assume that all measurements are exact and consistent.

An inquiry has the format,

? a b

which asks the weight difference between the sample pieces numbered a and b (a ̸= b).

The last dataset is followed by a line consisting of two zeros separated by a space.

13

Output

For each inquiry, ? a b, print the weight difference in micrograms between the sample pieces
numbered a and b, wb−wa, followed by a newline if the weight difference can be computed based
on the measurement results prior to the inquiry. The difference can be zero, or negative as well
as positive. You can assume that its absolute value is at most 1,000,000. If the difference cannot
be computed based on the measurement results prior to the inquiry, print UNKNOWN followed by
a newline.

Sample Input

2 2

! 1 2 1

? 1 2

2 2

! 1 2 1

? 2 1

4 7

! 1 2 100

? 2 3

! 2 3 100

? 2 3

? 1 3

! 4 3 150

? 4 1

0 0

Output for the Sample Input

1

-1

UNKNOWN

100

200

-50

14

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2012–11–18

Problem G

Let There Be Light
Input: Standard Input
Time Limit: 30 seconds

Suppose that there are some light sources and many spherical balloons. All light sources have
sizes small enough to be modeled as point light sources, and they emit light in all directions.
The surfaces of the balloons absorb light and do not reflect light. Surprisingly in this world,
balloons may overlap.

You want the total illumination intensity at an objective point as high as possible. For this
purpose, some of the balloons obstructing lights can be removed. Because of the removal costs,
however, there is a certain limit on the number of balloons to be removed. Thus, you would
like to remove an appropriate set of balloons so as to maximize the illumination intensity at the
objective point.

The following figure illustrates the configuration specified in the first dataset of the sample
input given below. The figure shows the xy-plane, which is enough because, in this dataset,
the z-coordinates of all the light sources, balloon centers, and the objective point are zero. In
the figure, light sources are shown as stars and balloons as circles. The objective point is at
the origin, and you may remove up to 4 balloons. In this case, the dashed circles in the figure
correspond to the balloons to be removed.

y

x

Figure G.1: First dataset of the sample input.

15

Input

The input is a sequence of datasets. Each dataset is formatted as follows.

N M R
S1x S1y S1z S1r

. . .
SNx SNy SNz SNr

T1x T1y T1z T1b

. . .
TMx TMy TMz TMb

Ex Ey Ez

The first line of a dataset contains three positive integers, N , M and R, separated by a single
space. N means the number of balloons that does not exceed 2000. M means the number of
light sources that does not exceed 15. R means the number of balloons that may be removed,
which does not exceed N .

Each of the N lines following the first line contains four integers separated by a single space.
(Six, Siy, Siz) means the center position of the i-th balloon and Sir means its radius.

Each of the following M lines contains four integers separated by a single space. (Tjx, Tjy, Tjz)
means the position of the j-th light source and Tjb means its brightness.

The last line of a dataset contains three integers separated by a single space. (Ex, Ey, Ez)
means the position of the objective point.

Six, Siy, Siz, Tjx, Tjy, Tjz, Ex, Ey and Ez are greater than −500, and less than 500. Sir is
greater than 0, and less than 500. Tjb is greater than 0, and less than 80000.

At the objective point, the intensity of the light from the j-th light source is in inverse proportion
to the square of the distance, namely

Tjb

(Tjx − Ex)2 + (Tjy − Ey)2 + (Tjz − Ez)2
,

if there is no balloon interrupting the light. The total illumination intensity is the sum of the
above.

You may assume the following.

• The distance between the objective point and any light source is not less than 1.

• For every i and j, even if Sir changes by ϵ (|ϵ| < 0.01), whether the i-th balloon hides the
j-th light or not does not change.

The end of the input is indicated by a line of three zeros.

16

Output

For each dataset, output a line containing a decimal fraction which means the highest possible
illumination intensity at the objective point after removing R balloons. The output should not
contain an error greater than 0.0001.

Sample Input

12 5 4

0 10 0 1

1 5 0 2

1 4 0 2

0 0 0 2

10 0 0 1

3 -1 0 2

5 -1 0 2

10 10 0 15

0 -10 0 1

10 -10 0 1

-10 -10 0 1

10 10 0 1

0 10 0 240

10 0 0 200

10 -2 0 52

-10 0 0 100

1 1 0 2

0 0 0

12 5 4

0 10 0 1

1 5 0 2

1 4 0 2

0 0 0 2

10 0 0 1

3 -1 0 2

5 -1 0 2

10 10 0 15

0 -10 0 1

10 -10 0 1

-10 -10 0 1

10 10 0 1

0 10 0 260

10 0 0 200

10 -2 0 52

-10 0 0 100

1 1 0 2

0 0 0

17

5 1 3

1 2 0 2

-1 8 -1 8

-2 -3 5 6

-2 1 3 3

-4 2 3 5

1 1 2 7

0 0 0

5 1 2

1 2 0 2

-1 8 -1 8

-2 -3 5 6

-2 1 3 3

-4 2 3 5

1 1 2 7

0 0 0

0 0 0

Output for the Sample Input

3.5

3.6

1.1666666666666667

0.0

18

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2012–11–18

Problem H

Company Organization
Input: Standard Input
Time Limit: 30 seconds

You started a company a few years ago and fortunately it has been highly successful. As the
growth of the company, you noticed that you need to manage employees in a more organized
way, and decided to form several groups and assign employees to them.

Now, you are planning to form n groups, each of which corresponds to a project in the company.
Sometimes you have constraints on members in groups. For example, a group must be a subset
of another group because the former group will consist of senior members of the latter group,
the members in two groups must be the same because current activities of the two projects are
closely related, the members in two groups must not be exactly the same to avoid corruption,
two groups cannot have a common employee because of a security reason, and two groups must
have a common employee to facilitate collaboration.

In summary, by letting Xi (i = 1, . . . , n) be the set of employees assigned to the i-th group, we
have five types of constraints as follows.

1. Xi ⊆ Xj

2. Xi = Xj

3. Xi ̸= Xj

4. Xi ∩Xj = ∅

5. Xi ∩Xj ̸= ∅

Since you have listed up constraints without considering consistency, it might be the case that
you cannot satisfy all the constraints. Constraints are thus ordered according to their priorities,
and you now want to know how many constraints of the highest priority can be satisfied.

You do not have to take ability of employees into consideration. That is, you can assign anyone
to any group. Also, you can form groups with no employee. Furthermore, you can hire or fire
as many employees as you want if you can satisfy more constraints by doing so.

For example, suppose that we have the following five constraints on three groups in the order of
their priorities, corresponding to the first dataset in the sample input.

• X2 ⊆ X1

19

• X3 ⊆ X2

• X1 ⊆ X3

• X1 ̸= X3

• X3 ⊆ X1

By assigning the same set of employees to X1, X2, and X3, we can satisfy the first three con-
straints. However, no matter how we assign employees to X1, X2, and X3, we cannot satisfy the
first four highest priority constraints at the same time. Though we can satisfy the first three
constraints and the fifth constraint at the same time, the answer should be three.

Input

The input consists of several datasets. The first line of a dataset consists of two integers n (2 ≤
n ≤ 100) and m (1 ≤ m ≤ 10000), which indicate the number of groups and the number of
constraints, respectively. Then, description of m constraints follows. The description of each
constraint consists of three integers s (1 ≤ s ≤ 5), i (1 ≤ i ≤ n), and j (1 ≤ j ≤ n, j ̸= i),
meaning a constraint of the s-th type imposed on the i-th group and the j-th group. The type
number of a constraint is as listed above. The constraints are given in the descending order of
priority.

The input ends with a line containing two zeros.

Output

For each dataset, output the number of constraints of the highest priority satisfiable at the same
time.

Sample Input

4 5

1 2 1

1 3 2

1 1 3

3 1 3

1 3 1

4 4

1 2 1

1 3 2

1 1 3

4 1 3

4 5

1 2 1

1 3 2

1 1 3

20

4 1 3

5 1 3

2 3

1 1 2

2 1 2

3 1 2

0 0

Output for the Sample Input

3

4

4

2

21

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2012–11–18

Problem I

Beautiful Spacing
Input: Standard Input
Time Limit: 15 seconds

Text is a sequence of words, and a word consists of characters. Your task is to put words into
a grid with W columns and sufficiently many lines. For the beauty of the layout, the following
conditions have to be satisfied.

1. The words in the text must be placed keeping their original order. The following figures
show correct and incorrect layout examples for a 4 word text “This is a pen” into 11
columns.

Figure I.1: A good layout. Figure I.2: BAD — Do not reorder words.

2. Between two words adjacent in the same line, you must place at least one space character.
You sometimes have to put more than one space in order to meet other conditions.

Figure I.3: BAD — Words must be separated by spaces.

3. A word must occupy the same number of consecutive columns as the number of characters
in it. You cannot break a single word into two or more by breaking it into lines or by
inserting spaces.

Figure I.4: BAD — Characters in a single word must be contiguous.

4. The text must be justified to the both sides. That is, the first word of a line must start
from the first column of the line, and except the last line, the last word of a line must end
at the last column.

22

Figure I.5: BAD — Lines must be justified to both the left and the right sides.

The text is the most beautifully laid out when there is no unnecessarily long spaces. For instance,
the layout in Figure I.6 has at most 2 contiguous spaces, which is more beautiful than that in
Figure I.1, having 3 contiguous spaces. Given an input text and the number of columns, please
find a layout such that the length of the longest contiguous spaces between words is minimum.

Figure I.6: A good and the most beautiful layout.

Input

The input consists of multiple datasets, each in the following format.

W N
x1 x2 . . . xN

W , N , and xi are all integers. W is the number of columns (3 ≤ W ≤ 80, 000). N is the
number of words (2 ≤ N ≤ 50, 000). xi is the number of characters in the i-th word (1 ≤ xi ≤
W−1
2). Note that the upper bound on xi assures that there always exists a layout satisfying the

conditions.

The last dataset is followed by a line containing two zeros.

Output

For each dataset, print the smallest possible number of the longest contiguous spaces between
words.

Sample Input

11 4

4 2 1 3

5 7

1 1 1 2 2 1 2

11 7

3 1 3 1 3 3 4

23

100 3

30 30 39

30 3

2 5 3

0 0

Output for the Sample Input

2

1

2

40

1

24

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2012–11–18

Problem J

Cubic Colonies
Input: Standard Input
Time Limit: 90 seconds

In AD 3456, the earth is too small for hundreds of billions of people to live in peace. Interstellar
Colonization Project with Cubes (ICPC) is a project that tries to move people on the earth
to space colonies to ameliorate the problem. ICPC obtained funding from governments and
manufactured space colonies very quickly and at low cost using prefabricated cubic blocks.

The largest colony looks like a Rubik’s cube. It consists of 3× 3× 3 cubic blocks (Figure J.1A).
Smaller colonies miss some of the blocks in the largest colony.

When we manufacture a colony with multiple cubic blocks, we begin with a single block. Then
we iteratively glue a next block to existing blocks in a way that faces of them match exactly.
Every pair of touched faces is glued.

A B

Figure J.1: Example of the largest colony and a smaller colony

However, just before the first launch, we found a design flaw with the colonies. We need to add
a cable to connect two points on the surface of each colony, but we cannot change the inside of
the prefabricated blocks in a short time. Therefore we decided to attach a cable on the surface
of each colony. If a part of the cable is not on the surface, it would be sheared off during the
launch, so we have to put the whole cable on the surface. We would like to minimize the lengths
of the cables due to budget constraints. The dashed line in Figure J.1B is such an example.
Write a program that, given the shape of a colony and a pair of points on its surface, calculates
the length of the shortest possible cable for that colony.

25

Input

The input contains a series of datasets. Each dataset describes a single colony and the pair of
the points for the colony in the following format.

x1 y1 z1 x2 y2 z2
b0,0,0 b1,0,0 b2,0,0
b0,1,0 b1,1,0 b2,1,0
b0,2,0 b1,2,0 b2,2,0
b0,0,1 b1,0,1 b2,0,1
b0,1,1 b1,1,1 b2,1,1
b0,2,1 b1,2,1 b2,2,1
b0,0,2 b1,0,2 b2,0,2
b0,1,2 b1,1,2 b2,1,2
b0,2,2 b1,2,2 b2,2,2

(x1, y1, z1) and (x2, y2, z2) are the two distinct points on the surface of the colony, where
x1, x2, y1, y2, z1, z2 are integers that satisfy 0 ≤ x1, x2, y1, y2, z1, z2 ≤ 3. bi,j,k is ‘#’ when there
is a cubic block whose two diagonal vertices are (i, j, k) and (i+ 1, j + 1, k + 1), and bi,j,k is ‘.’
if there is no block. Figure J.1A corresponds to the first dataset in the sample input, whereas
Figure J.1B corresponds to the second. A cable can pass through a zero-width gap between two
blocks if they are touching only on their vertices or edges. In Figure J.2A, which is the third
dataset in the sample input, the shortest cable goes from the point A (0, 0, 2) to the point B
(2, 2, 2), passing through (1, 1, 2), which is shared by six blocks. Similarly, in Figure J.2B (the
fourth dataset in the sample input), the shortest cable goes through the gap between two blocks
not glued directly. When two blocks share only a single vertex, you can put a cable through the
vertex (Figure J.2C; the fifth dataset in the sample input).

You can assume that there is no colony consisting of all 3× 3× 3 cubes but the center cube.

Six zeros terminate the input.

A B C

Figure J.2: Dashed lines are the shortest cables. Some blocks are shown partially transparent
for illustration.

26

Output

For each dataset, output a line containing the length of the shortest cable that connects the two
given points. We accept errors less than 0.0001. You can assume that given two points can be
connected by a cable.

Sample Input

0 0 0 3 3 3

###

###

###

###

###

###

###

###

###

3 3 0 0 0 3

#..

###

###

###

###

###

#.#

###

###

0 0 2 2 2 2

...

...

...

.#.

#..

...

##.

##.

...

0 1 2 2 1 1

...

...

...

.#.

#..

...

##.

27

##.

...

3 2 0 2 3 2

###

..#

...

..#

...

.#.

..#

..#

.##

0 0 0 0 0 0

Output for the Sample Input

6.70820393249936941515

6.47870866461907457534

2.82842712474619029095

2.23606797749978980505

2.82842712474619029095

28

